Probability Models and Axioms
General framework to calculate probability consists of the following steps:
- Specify the sample space \(\Omega\).
- Specify the probability law/distribution
- Identify an event of interest
- Calculate…
Sample Space
A sample space is legitimate when its elements are:
- mutually exclusive
- collectively exhaustive
- at the right granularity
Probability Law/Distribution
The mathematical function that describes the probabilities of different possible outcomes are mainly of two types:
- discrete, in which case \(\mathbb P(A)=\frac{k}{n}\), where \(k\) is the number of elements in \(A\) and \(n\) is the number of elements in \(\Omega\) (e.g. uniform, geometric…).
- continuous, in which case \(\mathbb P(A)\) is the area/volume of the relevant range within which a variable can vary (e.g. uniform, exponential…).
Axioms
Assuming \(A\), \(B\) and \(C\) are events \(\subseteq\Omega\), the following axioms are defined:
Axiom | Formula |
---|---|
Non negativity | \(\mathbb P(A)\geq 0\) |
Normalization | \(\mathbb P(\Omega)=1\) |
(finite) Additivity | \(\begin{align}A_i\cap A_j=\emptyset, i\neq&j\implies\\\mathbb P(A_1\cup A_2\cup\dots A_n)&=\sum_{i=1}^n\mathbb P(A_i)\end{align}\) (applies if \(A_i\) are countable) |
Putting together the three axioms above, it follows that \(\mathbb P(A)\leq 1\) and \(\mathbb P(\emptyset)=0\). Further relationships are summarized below.
Formula | Equivalent form |
---|---|
\(\mathbb P(A)\) | \(\mathbb P(A\cap B)+\mathbb P(A\cap B^C)\) |
\(\mathbb P(A^C)\) | \(1-\mathbb P(A)\) |
\(\mathbb P(A\cup B)\) | \(\begin{cases}\mathbb P(B),&\text{if }A\subseteq B\\\mathbb P(A)+\mathbb P(B)-\mathbb P(A\cap B),&\text{otherwise}\end{cases}\) (it follows that \(\mathbb P(A)\le\mathbb P(B)\) if \(A\subseteq B\)) |
\(\mathbb P(A\cap B)\) | \(\begin{cases}\mathbb P(A),&\text{if }A\subseteq B\\\mathbb P(A)+\mathbb P(B)-\mathbb P(A\cup B),&\text{otherwise}\end{cases}\) |
From \(\mathbb P(A\cup B)=\mathbb P(A)+\mathbb P(B)-\mathbb P(A\cap B)\) we can derive two inequalities: (a) the union bound, \(\mathbb P(A\cup B)\le\mathbb P(A)+\mathbb P(B)\), because \(\mathbb P(A\cap B)\ge0\); and (b) the Bonferroni inequality, that is obtained by swapping the union with the intersection, \(\mathbb P(A\cap B)\ge\mathbb P(A)+\mathbb P(B)-1\), because \(\mathbb P(A\cup B)\le1\). Both inequalities can be generalized using the method of mathematical induction.
Formula | Equivalent form |
---|---|
union bound | \(\displaystyle\mathbb P\left(\bigcup_{i=1}^n A_i\right)\le\sum_{i=1}^n\mathbb P(A_i)\) |
Bonferroni inequality | \(\displaystyle\mathbb P\left(\bigcap_{i=1}^n A_i\right)\ge\sum_{i=1}^n\mathbb P(A_i)-(n-1)\) |
Since \(\mathbb P(B)-\mathbb P(A\cap B)=\mathbb P(A^C\cap B)\), then \(\mathbb P(A\cup B)=\mathbb P(A)+\mathbb P(A^C\cap B)\) is an alternative expression of the union, using complements. Note that if we join another event, we have \(\mathbb P((A\cup B)\cup C)=\mathbb P(A\cup B)+\mathbb P(C)-\mathbb P((A\cup B)\cap C)\), which can be further expanded into \(\mathbb P(A)+\mathbb P(B)+\mathbb P(C)-\mathbb P(A\cap B)-\mathbb P(B\cap C)-\mathbb P(A\cap C)+\mathbb P(A\cap B\cap C)\). In general, this relationship is known as the inclusion-exclusion formula.
\[\mathbb P\left(\bigcup_{i=1}^n A_i\right)=\sum_{i=1}^n\mathbb P(A_i)-\sum_{i\lt j}\mathbb P(A_i\cap A_j)+\sum_{i\lt j\lt k}\mathbb P(A_i\cap A_j\cap A_k)+\dots(-1)^{n+1}\mathbb P\left(\bigcap_{i=1}^n A_i\right)\]Miscellanea
Worthy of mention is the De Morgan’s law
\[\begin{align}(A\cap B)^C&=A^C\cup B^C\\ (A\cup B)^C&=A^C\cap B^C\end{align}\]Finally, refreshing memory on the geometric series is also a good thing.
\[\begin{align}\sum_{i=0}^n q^i&=\frac{1-q^{n+1}}{1-q}&\sum_{i=0}^\infty q^i&=\frac{1}{1-q}, \lvert q\rvert<1\end{align}\]Which leads to the following general formula.
\[\sum_{i=k}^\infty q^i=\sum_{i=0}^\infty q^i-\sum_{i=0}^{k-1} q^i=\frac{1}{1-q}-\frac{1-q^{k-1+1}}{1-q}=\frac{q^k}{1-q}\]Go back to the syllabi breakdown.
Back-up
Set algebra
The properties below come from the basic properties of set algebra. You should know them by heart (especially the De Morgan’s law). You may add them in the case you have some spare space and if they keep slipping out of your mind.
Property | Formula |
---|---|
Commutative | \(\begin{align}A\cup B&=B\cup A\\ A\cap B&=B\cap A\end{align}\) |
Associative | \(\begin{align}A\cup(B\cup C)&=(A\cup B)\cup C\\ A\cap (B\cap C)&=(A\cap B)\cap C\end{align}\) |
Distributive | \(\begin{align}A\cup(B\cap C)&=(A\cup B)\cap(A\cup C)\\ A\cap (B\cup C)&=(A\cap B)\cup(A\cap C)\end{align}\) |
Identity | \(\begin{align}A\cap\Omega&=A\\ A\cup\emptyset&=A\end{align}\) |
Complement | \(\begin{align}A\cup A^C&=\Omega\\ A\cap A^C&=\emptyset\\\Omega^C&=\emptyset\\\emptyset^C&=\Omega\end{align}\) |
Idempotent | \(\begin{align}A\cup A&=A\\ A\cap A&=A\end{align}\) |
Domination | \(\begin{align}A\cup\Omega&=\Omega\\ A\cap\emptyset&=\emptyset\end{align}\) |
Absorption law | \(\begin{align}A\cup(A\cap B)&=A\\ A\cap (A\cup B)&=A\end{align}\) |